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ABSTRACT

Porsching's classical solution algorithm for the simulation of thermalhydraulic systems ,s

revisited with a view to pedagogy. The general linearized system equations are us~d to develop a

fully-implicit, back-substituted solution. Matri" notation is used and the solution algorithm is

explored using a simple example. Porsching's algoriihm alld other appr()ximations are derived as

special cases.
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INTRODUCTION

One of the more successful algorithms for thennalhydraulic simulation is based on the WOI"k of

Porsching 1969, 1971. This algorithm, involving the Jacobian (derivative of the system state matrix).

is used original1y in the computer program FLASH-4 (Porschillg 1969) and subsequently in the

Ontario Hydro program SOPHT (Chang 1977) and evolved into forms used in RETRAN (Agee 1982).

The strength of Porsching'z approach lies in its recogniticn of flow as the most important depender.t

parameter and, hence. its ful1y implicit treatment of flow. This ieads to excel1ent numerically

stability, consistetlcy and convergence. Further. the Jacobian permits a generalized approach to the

linearization of nonlinear systems. Tnis allows the development of a system state matrix which

contains all the system dynamics in terms of the dependent parameters of mass, energy and flow.

Back substitution finally gives a matrix rate equation b terms of the system flow (the unknown) and

the system derivatives. While this approach is certainly a proven and successful one, it has some

disadvantages. The matrix rate equation involving the Jacobian is as complicated as it is general. The

resulting expressions are somewhat obtuse and it is diffi;;ultto Obtain an intuitive feel for the system.

This complexity also hinders implementation in a simulation code and makes error traCking a tedious

process. The pervasiveness and obtuseness of the algorithm begs a revisit so as to distil the salient

features, leaving them exposed for pedagogy and further scrutiny.

Recently. (Garland 1987), work has been presented on the use of the Rate Form of the equation of

5tate. This work showed that by casting the equation of state in the form of a mte equation rather

than the normal algebraic form, the system state matrix can be more logically formed from the

normal conservation rate equation5 for mass, energy and momentum plus the pressure rate equation.

These form the four cornerstone equations in thermalhydraulic systems analysis (Figure I). Numerical

implementation of the rate form proved to be very successful, leading to roughly a factor of 10

improvement over the algebraic form of the equation of state, largely due to the iterative nature of

the algebraic form. Incorporating the implicit pressure dependency in the numerical method also

drastically improved the numerical stability.

Since Porsching's method also carried the pressure dependency implicitly (via the Jacobian), the

question arises as to how the Rate form compares the Porsching's method. This paper is devoted to

an explanatory derivation of the fully-implicit back-substituted form (FIBS), which is a more general

than the Rate form. It is shown that the Porsching form is identical to the Rate form and is a subset

of the fully-implicit baCk-substituted form and is easily derived from it. The FIBS form thus offers

an alternative to Porsching, is found to be of some pedagogical usefulness and is far mOre intuitive

and easier to code.
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'!l"'ij DERIVATION OF FIBS

Following Porsching (Porsching 1971), the general form of system equations can be written

. ~
y - F(t,y) (1)

which is linearized, assuming no explicit t dependence to give:

y - Ft + At J Y (2)
or

Ay - At F t + At J Ay (3)

to give

[I - At J] Ay - At F< (4)

where J ;~ the system Jacobian.

For typical thermalhyctraulic systerru: using the node-link notation':

(5)

, "

.- . , ."- - ',';".. '-

t. j (Pu + Swp t.Pu - Pd - Swp "Pd) - k j (Wj + Sww AWj )' + b Wj

~ ~
','J: - _

dW j

dt

AW j
At

Typically bwj - (Aj/L) (hjP jg + APpump) where h j = height,

dM,- L (W. + S.... AW.)
dt (kEd,

L (W. + S.... AW.)
kEu,

- AM,-,
At

( 6)

dR, L (W. + SIlII AW.) (!!<~) L (WOo + SIlII AW.) (!!<~) + Qi
dt kEd, (M. + SIlH AM.) k.!u1 (M. + SIlH AM.)

L (l!,.H. +~ AW. +~ MI. ~.H. AM.)
kEd, M. M. M. M/
L (~!!< +~ AW. + -~ MI. ~!!< tu'l.) + Qi

\- kEU, M. ~ ~ M 2•

1 Porschin& actually use. U. total .nersy rather than H, total enthalpy in a hYbrid !o~=

u, - E (9"" .... ) "k - E (8.'.... ) "k. Q,
k(T i kill

There is no advanta&. to trackin& bnth H and U in a simulation: thus in this paper, H is used lhroushout.
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ll!!,
flt

flP, - £f, t>M, + OP, l>H, + 8P, flV,
aM, aH, av,

or

flPi Cli ll!!, + Cz, Mi, for constant volume
ilt flt flt

(7)

(8)

where ked, indi~ates a sum over links for which the node i is a downstream node (i.~. links are

sources) and keu, is for upstream nodes.

Switches, S, are used to provide user control over degree of implicitness:

o = explicit

I = implicit.

The system unknowns to be sclved for are AW, ll.M, L\H and ll.P using equations (5), (6), (7) and (S).

The general strategy is to reduce the number of unknowns so that the size of the matrices to !le

inverted in the simuitaneous solntion of these equations is reduced. The mass equation (6) is simple

and is used to eliminate ll.M in terms of ll.W. Flow is chosen as the prime variable since i. is the

main actor in thermalhydraulic systems. Tne enthalpy equaticn poses a problem as it is too complex

to permit a simple substitution. Porsching surmounts this by settir,g SHH = SHH r. 0, ie making the

solution explicit in specific enthalpy. However, we need not make this assumption; by casting tbe

equations in matrix notation, the full implicitness can be retained while still allowing tbe back

substitutions to be made.

Proceeding then, using matrix notation:

ilK - flt A.... [yt + S.... flY]

where, for a ~ node - 5 link example (Figure 2):

-I~
links ->

0 0
A.... - -1 0

1 -1
0 1

1
o
o

-1
j]

nodes
I
v

(6a)

(9)

This matrix contains the total system geometry. It is constructed by the following procedure:

For each column (link), insert -1 for the upstream node and +1 for the downstream node for

that link since the link supplies (adds) flow to the downstream node and takes it aW<iY from
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the upstream node. Flow reversal is handled automatically since the sign of W will take care

of mass accounting properly.

The form of other matrices in the following are derivable from AI1</. This can be used to advantage

in coding. The input data for each link need only contain pointers to the upstream node and the

downstream node for thaI link. This allows AI1</ to be created. In short, the upstream node and

downstream node for each link completely defines the geometry and this can be used to prog!3lllming

advantage.

The flow equation is:

-yJ

DoY - t>.t I AWl! [pt ~ SWI! t>.P] + ~ [yt + 2Sww ~ loY] + B" I

Where:

(Sa)

-',

AWW _

AWl! _

rk,IO,1
]-kzlwz! 0

0
-kslWsl

ft/Ll -A,/L, 0 0

]
Az/Lz -AzILz 0

0 A3/L, -A3 / L3

l~A./L. 0 0 "'.fL.
-As/Ls 0 As/Ls

(10)

Ill)

note that AW
" is formed easily from A'''' by the following procedure:

First multiply IA"" by -A,IL
"

-Az/Lz, _.. As/L,l- l

Then transpose the resulting matdx to give AWl!.

] (12)

Finally:

(7a)

Where t>.H" and DoH" refer to the enthalpy and mass associated with upstream properties of the links

(ie the transported properties). Thtis



- ~\il/Il'1,
~

Q () ~ 'N'ft n
it' '...I

flli"" = WI/ -'W,' 0 .. IN.5 AI..iA
'/'tI, li'1.

C W" ill. - W3,ill, 0 o f,
0 •

0 W~/ill " -\Vul _\\~
/mu

~~~:E {:::1 [~tJi' - ~~
t>H' - (13 & 14)•

tJi.
tJi.

r',/" 0 0 +H./M. o 1
H'tJ Hi/Mi -H,/M. 0 0 H./M.IA\ - 0 H.IM. -H,/M, 0 o I {IS)

0 0 H,IM, -H./M. -H./M.J

Fer each link, the elements oi the column are formed from the link flow, Wk and the upstream

properties (H and M). Each link has a sink and source node.

Similarly

AHM* ...
o
-W.H./K,'
W.H2i M•2

o

o
c
-w3H,/M!
W,H,/Ms'

W.H,/M.2

o
o
-W.H./M.'

o
~~H1JM42

o
-Ws!l./M;

]""
We wish to write the matrix equations eliminating the * parameters, ie cor,vert llH' to hR, t>H' to t>H.

To do this we introduce a transfer matrix, rLN so that

tJi' - rLN fiH

where

nodes ->

[j
0 0
1 0

rLN 0 1
0 0
0 0 I]

links

I
v

(17)

(18)

where r LN is formed by entering I for the node that is the upstream or source node for each link.

Now, we can define:

and

(19)

(20)
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• ABM tJl.

Thus

(21)

Substituting in the mass equation (6a):

l:Jl - bt { A'*' (Y + ;;"" t>.ll) + SBH ABH bH ' bt SBM ABM A"'" (Il t + If'" bY) + SB I
(22)

Solving fo;: tJl:

t>H - tot[1 ' t>t S!lH ABH )" lAow (yt + S... AY) , .'>t SBM A"" A""'(yt + S"'" t>Y) + Sbl
(23)

So now we have l:Jl and bH in terms of bY. Recalling (8), in matri" notation, we have:

j

wht;:re

[

C

o1l C,2 ]

(8a)

(24)

Similarly for C2•

We can back-substitute tJl and AH into (8j and the result into the flow equation to leave a matrix

equation in bY only, which can be solved by traditional numeric means. Hence,

AP - t>t C, A.... (y t + s"'" AY) + t>t C2 [I - At S.. ABH ]" [AOW (W t + Sow All)

bt SBM A,1l!i A"'" (y t + s"" AY) + liB)

B bt A"'" y t + tot A""2 t>Y + At SP (25)

where: A"'" - C, A"'" .;- C2 [I ' t>t S.. ABHj" [AIlI< - t>t SBM ABM A,HW] (26)

A""2 - S.... :;, A.... + C2 [I - At S.. A"]" [Sow Aow -At SBM SHW ABM AHW ] (27)

sP - C2 [I ' t.t S.. AHH ]" SH (28)

Thus:
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IlV _ Ilt I AWP [pt + Ill: S (Al'Wl Vt + AI'W2 IlV + liP) 1 +,WP

A"" [Wt + 2S"" A"" IlV] + II>! 1

Collecting terms in IlV:

[I - Ilt(2 S"" A"" + Ilt Swp AWP AI'W2) 1 IlV

- Ilt tA"" + Ilt Swp AWP Al'Wl] vt + IIw + AWl! [pt + Ilt S",. IIP~

which is of the form

A IlV - B

(29)

(30)

.)

which can be solved by conventional means to yield IlV. Then we can directly cakulate llM, IlH and

Ill' !!sing equations 6a, 7a (or 21 l, and 8a. Associated changes in temperature can be obtained as for

pressure, using the appropriate equation of state coefficients.

Special cases

To summarize, the general solution is given by the following equations:

Al'Wl _ C1 A~'" + C2 [I • Ilt SHB AllIij·l [Aaw • Ilt SIlM AIlM A~l (26)

AI'W2 _ S~ C1 A~ + C2 [I - Ilt SHB ABHr1 [Saw Aaw ·Ilt SIlM s~ AIlM A~] (27)

[I • llt(2 S"" A"" + Ilt Swp AWP A1'W2) J IlV

- lit l [A"" + Ilt Swp AWP Al'Wl] Ve ... II>! + AWP [pt + Ilt Swp BP]) (30)

llM - Ilt A~ [Il t + s~ IlV] (6a)

Ill' - C1 !lM + C, IlH (8a)

Special cases of this general algorithm are as follows:

Fullv explicit: all S's = 0



lJ.t AIlM A j

t>t A"" A j

AN1 _ C1 A'"'" + Cz A"'"

ANZ _ 0

BP - Cz BB

:. lJ.y - lJ.t I A"" yt + BW + AWP pt )

tJ{ - lJ.t ~ yt

lJ.H _ lJ.t { A"'" yt + BB

lJ.p - C1 tJ{ + Cz lJ.H,

as expected.

Porschi~g's semi-implicit (SIIB - 0 and SIlM - O. all other S's = :)

AN1 _ C1 A"'" + Cz A"'"

AFWZ - C1 A'"'" + Cz A"'"

BP
- Cz ng

(I - lJ.t(2 A"" + lJ.t AWP AFWZ )] lJ.y

_ lJ.t { (A"" + t>t AWP AN1 ] yt + SW + AWP [pt + t>t SP] )

tJ{ - t>t A"'" [yt + lJ.y 1

lJ.H _ t>t { AID< (yt + lJ.Y) + BB )

t>P - C1 tJ{ + Cz lJ.H

Fully Implicit: All S's = I

AN1 _ C1 A + Cz (I - t>t AIIB]'l [A"'"

ANZ _ C1 A + Cz [I t>t AHB]'l [Ab"

BP - Cz [I - lJ.t AIlB]'l sa

(I . lJ.t(2 A"" + lJ.t AWP ANZ) 1 lJ.y

_ lJ.t l (A"" + lJ.t AWP A"'l] Vt + BW + AWP [pt + t>t SP] )

9

(26)

(27)

(28)

(30)

(6a)

(7a)

(8a)

(26)

(27)

(28)

(30)

(6a)

(21)

(8a)

(26)

(27)

(28)

(30)
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(Ga)

6H (21)

C, t.H + Cz t.H

PROGRAMMING NOTES

(Sa)

It should be noted that the full system geometry is ::ontained in A..... till other matrices are dei"ived

from this matrix and node/link properties. Programming is thus very straightforward. In addition,

the switches, S, can be varied at will to control the degree of implications of the system variables.

W, M, Hand P.

The fully-implicit method is more complicated than the semi-implicit method in that it requires

the addition and multiplication of more matrices as well as a matrix inversion. The effect of these

additional operations is quite costly, especially when a 13!ge number of nodes is needed. In ,me case

study (Hoskins 1989), for 9 nodes and links, the cost is a 50% increase ;n iteration time. But this

becomes a 250% increase as oae approaches the 36 node/link case. By handling the matrix operations

as efficiently a~ possible, some increase in speed should be attainable for both models. Using efficient

assembly routines (rather than FORTRAN) for the matrix operaticns yielded a 10 to 20% reduction

(increasing from 9 nodes to 36 nodes) in the time per iteration for the semi-implicit method and a

15 to 25% reduction in the fully-implicit case.

Usually the matrices contain mostly zeros and, in the case of a circular loop, may be diagonally

dominant in nature (i.e. non-zero elements occupy one, two or three stripes through the matrix). By

writing routines specific to the nodal layout for handling the matrix operations, significant gains in

speed may be possible. However, the simulator will no longer be general in nature and the routines

may have to be changed if the nodal layout is altered.

If the multiplication of two large matrices is desired, say NxN in dimension. the time to carry out

the operation (N3 multiplications and N 3 additions) can be very significant. However, il is possible

to reduce the number of individual operations without losing the generality of the method. Take, for

example, the multiplication of AIIP and APIJ
. The rows in the former term pertain to links and the

columns to nodes. Each row will only contain two terms located in the columns corresponding to the

upstream and downstream nodes of that particular link. Thus, knowing which are the upstream and

downstream nodes for every link, it is only necessary to do two multiplications and one addition to

obtain each element of the product matrix (2Nz multiplications arid NZ additions). By taking
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advantage of having only two elements in each row of the former term or only two elements in each

column of the latter term wherever possible, significant savings in time may be observed. With this

improvement in the code, a cut in time by a factor of two for 18 nodes and by a factor of three for

36 nodes, regardless of the method (semi- Or fUlly-implicit) was obtained. The cost of the fully­

implicit method is reduced slightly to a 32% increase in iteration time over the semi-implicit method

when 9 nodes and 9 links are used. This becomes a 214% increase as one approaches the 36 node case.

Since the focus of this paper is to provide a less obtuse and more general derivation of

thermalhydraulic system equations than Por3ching's method, a full comparison of the performance

of the fully- and semi-implicit methods will not be made. Suffke it to say that, in general, the semi­

implicit method has a Courant limit on the maximum time step that can be taken in order to ensure

stability. The fu!ly-implicit method does not have this limitation. As the Courant time step limit is

determined by the nodal residence time, the time step limit is dependant on the node sizes and the

flows through the nodes. Practical simulations have a further time step constraints such as: the

tracking of movement of valves, the maintenance of accuracy, synchronizing of report times, etc.

Thus, the choice between the semi- or fully-implicit method depends on the time per iteration

multiplied by tbe rrumber of iterations required to reac!! the largest time step permitted by the

simulation problem. For example, for a 9 node case, the semi-implicit method required 0.10 seconds

per iteration and required 7. iterations to meet the report time of 1.0 seconds. The fully-implicit

method meet the report time in one iteration which took 0.14 seconds. At 36 nodes however, the

semi-implicit method took 2 x 0.71 seconds while the fully-implicit method took 2.12 seconds.

Clearly, one method is Got superior to the other in all cases.

Pressure determination involves the use of property derivatives. To avoid the numerical problems

associated with discontinuities, smooth functions for properties must be used, such as those derived

by [Garland 1988 and 1989]. FORTRAN Source code for the water properties as described in these

works is available on a MS-DOS diskette from the author. These functions and routines permit the

qui:k and fast evaluation of l>P and Sf given L>M and l>H for all water phases. Automatic

adjustment is provided to prevent P and T drift from values consistent with current M and H values.

These routines are nO:l-iterative, essential for real-time simulation.

FORTRAN SOurce code illustrating the FIBS algorithm is available on MS-DOS diskette from the

author.
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CONCLUSION

The FIBS approach for thermalhydraulic system simulation has been compared te the classic work

of Porschirtg. Porsching's algorithm is derived as a subset of the fully implicit approach. Focusing

on the system Jacobian, as Porsching did, focuses on the perturbation of the system as a whole.

Although general, it tends to obscure the interaction of the main players in typical thermalhydraulic

systems: flow and pressure. The FIBS form is shown to be more generallhan Porsching's method,

yet less obtuse. The interplay of flow and pressure is clarified and coding is simplified.
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Figure Captions:

Figure 1:

Figure 2:

The four cornerstone equations for thermalhydraulic system simulation and ,he flow

of information between them.

The simple 4 node - S link example.
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